
Expressive Power and Decidability for
Memory Logics

Carlos Areces∗ Diego Figueira† Santiago Figueira‡ Sergio Mera‡

Abstract

Taking as inspiration the hybrid logic HL(↓), we introduce a new family of logics
that we call memory logics. In this article we present in detail two interesting mem-
bers of this family defining their formal syntax and semantics. We then introduce a
proper notion of bisimulation and investigate their expressive power (in comparison
with modal and hybrid logics). We will prove that in terms of expressive power, the
memory logics we discuss in this paper are more expressive than orthodox modal
logic, but less expressive than HL(↓). We also establish the undecidability of their
satisfiability problems.

1 Memory Logics: Hybrid Logics with a Twist

Hybrid languages have been extensively investigated in the past years. HL, the simplest
hybrid language, is usually presented as the basic modal language K extended with special
symbols (called nominals) to name individual states in a model. These new symbols
are simply a new sort of atomic symbols {i, j, k, . . .} disjoint from the set of standard
propositional variables. While they behave syntactically exactly as propositional variables
do, their semantic interpretation differ: nominals denote elements in the model, instead
of sets of elements. This simple addition already results in increased expressive power.
For example the formula i ∧ 〈r〉i is true in a state w, only if w is a reflexive point named
by the nominal i. As the basic modal language is invariant under unraveling, there is no
equivalent modal formula [?].

But as we said above, HL is just the simplest hybrid language. Once nominals have
been added to the language, other natural extensions arise. Having names for states at
our disposal we can introduce, for each nominal i, an operator @i that allows us to jump
to the point named by i obtaining the language HL(@). The formula @iϕ (read ‘at i, ϕ’)
moves the point of evaluation to the state named by i and evaluates ϕ there. Intuitively,
the @i operators internalize the satisfaction relation ‘|=’ into the logical language: M, w |=

∗INRIA Nancy Grand Est, France
†LSV, ENS Cachan, CNRS, INRIA, France
‡Departamento de Computación, FCEyN, UBA, Argentina

1

ϕ iff M |= @iϕ, where i is a nominal naming w. For this reason, these operators are
usually called satisfaction operators.

If nominals are names for individual states, why not introduce also binders. We would
then be able to write formulas like ∀i.〈r〉i, which will be true at a state w if it is related to
all states in the domain. The ∀ quantifier is very expressive: the satisfiability problem of
HL(∀) (HL extended with the universal binder ∀) is undecidable [?]. Moreover, HL(@,∀)
is expressively equivalent to full first-order logic (over the appropriate signature).

From a modal perspective, other binders besides ∀ are possible. The ↓ binder binds
nominals to the current point of evaluation. In essence, it enables us to create a name for
the here-and-now, and refer to it later in the formula. For example, the formula ↓i.〈r〉i
is true at a state w if and only if it is related to itself. The intuitive reading is quite
straightforward: the formula says “call the current state i and check that i is reachable”.
The logic HL(↓) is also very expressive but weaker than HL(∀). Sadly, its satisfiability
problem is also undecidable.

Different binders for hybrid logics have been investigated in detail (see [?]), but in this
article we want to take a look at ↓ from a slightly different perspective: we will consider
nominals and ↓ as ways for storing and retrieving information in the model.

Models as Information Storage. We should note that nominals and ↓ work nicely
together. Whereas ↓i stores the current point of evaluation in the nominal i, nominals act
as checkpoints enabling us to retrieve stored information by verifying if the current point is
named by a given nominal i. To make this point clear, let’s define formally the semantics
of HL(↓).
Definition 1. A hybrid signature S is a tuple 〈prop,rel,nom〉 where prop, rel, nom
are mutually disjoint infinite enumerable sets (the sets of propositional symbols, relational
symbols and nominals, respectively).

Formulas of HL(↓) are defined over a given S by the following rules

forms ::= p | i | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | ↓i.ϕ,

where p ∈ prop, i ∈ nom, r ∈ rel and ϕ, ϕ1, ϕ2 ∈ forms. Formulas in which any
nominal i appears in the scope of a binder ↓i are called sentences.

A model forHL(↓) over a signature S is a tuple 〈W, (Rr)r∈rel, V, g〉 where 〈W, (Rr)r∈rel, V 〉
is a standard Kripke model (i.e., W is a non empty set, each Rr is a binary relation over
W , and V is a valuation), and g is an assignment function from nom to W .

Given a model M = 〈W, (Rr)r∈rel, V, g〉 the semantic conditions for the propositional
and modal operators are defined as usual (see [?]), and in addition:

〈W, (Rr)r∈rel, V, g〉, w |= i iff g(i) = w
〈W, (Rr)r∈rel, V, g〉, w |= ↓i.ϕ iff 〈W, (Rr)r∈rel, V, gi

w〉, w |= ϕ
where gi

w is the assignment identical to g
except perhaps in that gi

w(i) = w.

2

We can think that ↓i is modifying the model (by storing the current point of evaluation
into i), and that i is being evaluated in the modified model. We can see the assignment g
as a particular type of ‘information storage’ in our model, and consider ↓ and i as our way
to access this information storage for reading and writing.

But let us take a step back and consider the new picture. When we introduced the
↓ binder, our main aim was to define a binder which was weaker than the first-order
quantifier. We thought of the semantics of ↓ first, and we suitably adjusted the way we
updated the assignment later. But why do we need to restrict ourselves to binders and
assignments?

Let us start with a standard Kripke models 〈W, (Rr)r∈rel, V 〉, and let us consider a
very simple addition: just a set S ⊆ W . We can, for example, think of S as a set of states
that are, for some reason, ‘known’ to us. Already in this very simple set up we can define
the following operators

〈W, (Rr)r∈rel, V, S〉, w |= ©rϕ iff 〈W, (Rr)r∈rel, V, S ∪ {w}〉, w |= ϕ
〈W, (Rr)r∈rel, V, S〉, w |= ©k iff w ∈ S.

As it is clear from the semantic definition, the ‘remember’ operator ©r (a unary modal-
ity) just marks the current state as being ‘already visited’, by storing it in our ‘memory’
S. On the other hand, the zero-ary operator ©k (for ‘known’) queries S to check if the
current state has already been visited.

In this simple language we would have that 〈W, (Rr)r∈rel, V, ∅〉, w |= ©r 〈r〉©k will be
true only if w is reflexive. Is this new logic equivalent to HL(↓)? As we will prove in
this article, the answer is negative: the new language is less expressive than HL(↓) but
more expressive than K. Intuitively, in the new language we cannot discern between states
stored in S, while an assignment g keeps a complete mapping between states and nominals.

Naturally, we can include structures which are richer than a simple set, in our models.
Let us consider one example. Let S be now a stack of elements that we will represent as
a list that ‘grows to the right’ (we will denote the act of pushing w in S as S · w). Let us
define the operators:

〈W, (Rr)r∈rel, V, S〉, w |= (push)ϕ iff 〈W, (Rr)r∈rel, V, S · w〉, w |= ϕ
〈W, (Rr)r∈rel, V, S · w′〉, w |= (pop)ϕ iff 〈W, (Rr)r∈rel, V, S〉, w |= ϕ

〈W, (Rr)r∈rel, V, []〉, w |= (pop)ϕ never
〈W, (Rr)r∈rel, V, S · w′〉, w |= top iff w = w′.

We will call this new family of logics memory logics (M) and in this article we will
focus on M(©r ,©k), i.e., the logic K extended with the operators ©r and ©k introduced
above, and investigate two possible variations.

More generally, our proposal is to take seriously the usual saying that ‘modal languages
are languages to talk about labeled graphs’ but give us the freedom to choose what we
want to ‘remember’ about a given graph and how we are going to store it.

To close this section, we formally define the syntax and semantics of the logics we will
investigate in the rest of the article.

3

Syntax and semantics for M(©r ,©k). Syntactically, we obtain M(©r ,©k) by extend-
ing the basic modal language K with the ©r and ©k modalities.

Definition 2 (Syntax). Let prop = {p1, p2, . . . } (the propositional symbols) and rel =
{r1, r2, . . . } (the relational symbols) be pairwise disjoint, countable infinite sets of symbols.
The set forms of formulas of M(©r ,©k) in the signature 〈prop,rel〉 is defined as:

forms ::= p | ©k | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | ©rϕ,

where p ∈ prop, r ∈ rel and ϕ, ϕ1, ϕ2 ∈ forms.

While the syntax of the logics that we will discuss in this article is the same, they differ
subtly in their semantics.

Definition 3 (Semantics). Given a signature S = 〈prop,rel〉, a model for M(©r ,©k) is a
tuple 〈W, (Rr)r∈rel, V, S〉, where 〈W, (Rr)r∈rel, V 〉 is a standard Kripke model and S ⊆ W .
The semantics is defined as:

〈W, (Rr)r∈rel, V, S〉, w |= p iff w ∈ V (p)
〈W, (Rr)r∈rel, V, S〉, w |= ¬ϕ iff 〈W, (Rr)r∈rel, V, S〉, w 6|= ϕ

〈W, (Rr)r∈rel, V, S〉, w |= ϕ ∧ ψ iff 〈W, (Rr)r∈rel, V, S〉, w |= ϕ
and 〈W, (Rr)r∈rel, V, S〉, w |= ψ

〈W, (Rr)r∈rel, V, S〉, w |= 〈r〉ϕ iff there is w′ such that Rr(w, w′)
and 〈W, (Rr)r∈rel, V, S〉, w′ |= ϕ

〈W, (Rr)r∈rel, V, S〉, w |= ©rϕ iff 〈W, (Rr)r∈rel, V, S ∪ {w}〉, w |= ϕ
〈W, (Rr)r∈rel, V, S〉, w |= ©k iff w ∈ S

In this paper, we will be especially interested in the case where formulas are evaluated
in models with no previously ‘remembered’ states, that is, the case where S = ∅. We will
call M∅(©r ,©k) the logic that results from restricting the class of models to those with
S = ∅.

2 Bisimulation

Here we will define a proper notion of bisimulation for M(©r ,©k) and M∅(©r ,©k), and use
it to investigate their expressive power. We will use a presentation in terms of Ehrenfeucht
games [?], but a relational presentation is also possible.

We start with some notation. Given M = 〈W, (Rr)r∈rel, V, S〉 and states w1, . . . , wn,
we define M[w1, . . . , wn] = 〈W, (Rr)r∈rel, V, S ∪ {w1, . . . , wn}〉. The set of propositions
that are true at a given state w is defined as props(w) = {p ∈ prop | w ∈ V (p)}. Given
two models M = 〈W, (Rr)r∈rel, V, S〉 and M′ = 〈W ′, (R′

r)r∈rel, V
′, S ′〉, and states w ∈ W

and w′ ∈ W ′, we say that they agree if props(w) = props(w′) and w ∈ S iff w′ ∈ S ′.

4

Bisimulation Games for M(©r ,©k). Let S = 〈prop,rel〉 be a standard modal sig-
nature. Let M1 = 〈W1, (R

1
r)r∈rel, V1, S1〉 and M2 = 〈W2, (R

2
r)r∈rel, V2, S2〉 be models

and let w1 ∈ W1 and w2 ∈ W2 be agreeing states. We define the Ehrenfeucht game
E(M1,M2, w1, w2) as follows. There are two players called Spoiler and Duplicator. In a
play of the game, the players move alternatively. Spoiler always makes the first move. At
every move, Spoiler starts by choosing in which model he will make a move. Let us set
s = 1 and d = 2 in case he chooses M1; otherwise, let s = 2 and d = 1. He can then either:

1. Make a memorizing step. I.e., he extends Ss to Ss ∪ {ws}. The game then continues
with E(M1[w1],M2[w2], w1, w2).

2. Make a move step. I.e., he chooses r ∈ rel, and vs, an Rs
r-successor of ws. If ws has

no Rs
r-successors, then Duplicator wins. Duplicator has to chose vd, an Rd

r-successor
of wd, such that vs and vd agree. If there is no such successor, Spoiler wins. Otherwise
the game continues with E(M1,M2, v1, v2).

In the case of an infinite game, Duplicator wins. Note that with this definition, exactly
one of Spoiler or Duplicator wins each game.

Definition 4 (Bisimulation). We say that two models M1 and M2 are bisimilar (and
we write M1↔M2) when there exist w1 ∈ M1 and w2 ∈ M2 such that they agree and
Duplicator has a winning strategy on E(M1,M2, w1, w2). In this case we also say that w1

and w2 are bisimilar (M1, w1↔M2, w2).

We are now ready to prove that the notion of bisimulation we just introduced is ade-
quate. We will show that formulas of M(©r ,©k) are preserved under bisimulation.

Definition 5 (Logic equivalence). Given M1,M2 two models, w1 ∈ M1, w2 ∈ M2, we
say that w1 is equivalent (for some logic L) to w2 (w1 ! w2) if for all ϕ (in L) we have
M1, w1 |= ϕ iff M2, w2 |= ϕ.

Theorem 6. Let M1,M2 be two models, w1 ∈M1, w2 ∈M2. If w1↔w2 then w1 ! w2.

Proof. We prove that if w1 and w2 agree and Duplicator has a winning strategy on
E(M1,M2, w1, w2) then ∀ϕ ∈ M(©r ,©k), M1, w1 |= ϕ iff M2, w2 |= ϕ. We proceed
by induction on ϕ.

• The propositional and boolean cases are trivial.

• ϕ = ©k . This case follows from Definition 3 and because w1 and w2 agree.

• ϕ = 〈r〉ψ. This is the standard modal case. Preservation is ensured thanks to the
move steps in the definition of the game.

5

• ϕ = ©rψ. We prove that M1, w1 |= ©rψ implies M2, w2 |= ©rψ. Suppose M1, w1 |=
©rψ then M1[w1], w1 |= ψ. The following claim is clear.

Claim. LetM1,M2 be two models, w1 ∈M1, w2 ∈M2. If Duplicator has a winning
strategy on E(M1,M2, w1, w2) then he has a winning strategy on E(M1[w1],M2[w2], w1, w2).

By this claim, Duplicator has a winning strategy on E(M1[w1],M2[w2], w1, w2).
Applying inductive hypothesis and the fact that M1[w1], w1 |= ψ, we conclude
M2[w2], w2 |= ψ and then M2, w2 |= ©rψ. The other direction is identical.

This concludes the proof.

The converse of Theorem 6 holds for image-finite models (i.e., models in which the set
of successors of any state in the domain is finite). The proof is exactly the same as for K,
as ©r and ©k do not interact with the accessibility relation [?].

Theorem 7 (Hennessy-Milner Theorem). Let M1 and M2 be two image finite models.
Then for every w1 ∈M1 and w2 ∈M2, w1 ! w2 then w1↔w2.

Clearly, as Theorems 6 and 7 hold for arbitrary models, the results hold also for
M∅(©r ,©k).

3 Expressivity

In this section we compare the expressive power of memory logics with respect to both
the modal and hybrid logics. But comparing the expressive power of these logics poses a
complication because, strictly speaking, each of them uses a different class of models. We
would like to be able to define a natural mapping between models of each logic, similar to
the natural mapping that exists between Kripke models and first-order models [?].

Such a mapping is easy to define in the case of M∅(©r ,©k): each Kripke model
〈W, (Rr)r∈rel, V 〉 can be identified with the M∅(©r ,©k) model 〈W, (Rr)r∈rel, V, ∅〉. Simi-
larly, for formulas which are sentences, the M∅(©r ,©k) model 〈W,
(Rr)r∈rel, V, ∅〉 can be identified with the hybrid model 〈W, (Rr)r∈rel, V, g〉 (for g arbi-
trary). As we will discuss below, it is harder to find such a natural way to transform
models for the case of M(©r ,©k): the most natural way seems to involve a shift in the
signature of the language.

Definition 8 (L ≤ L′). We say that L is not more expressive than L′ (notation L ≤ L′)
if it is possible to define a function Tr between formulas of L and L′ such that for every
model M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

We say that L is strictly less expressive than L′ (notation L < L′) if L ≤ L′ but not
L′ ≤ L.

6

K is strictly less expressive than M∅(©r ,©k). It is easy to see intuitively that ©r and
©k do bring additional expressive power into the language: with their help we can detect
cycles in a given model, while formulas of K are invariant under unraveling.

Showing that K ≤M∅(©r ,©k) is straightforward as K is a sublanguage of M∅(©r ,©k).
Hence, we can take Tr to be the identity function.

Theorem 9. K ≤M∅(©r ,©k).

Proving that M∅(©r ,©k) is strictly more expressive is only slightly harder.

Theorem 10. K 6= M∅(©r ,©k)

Proof. Let M1 = 〈{w}, {(w, w)}, ∅〉 and M2 = 〈{u, v}, {(u, v), (v, u)}, ∅〉 be two Kripke
models. It is known that they are K bisimilar (see [?]). On the other hand, the equivalent
M(©r ,©k) models are distinguishable by ϕ = ©r 〈r〉©k .

M∅(©r ,©k) is strictly less expressive than HL(↓). We will define a translation that
maps formulas of M∅(©r ,©k) into sentences of HL(↓). Intuitively, it is clear that we can
use ↓ to simulate ©r , but ©k does not distinguishes between different memorized states
(while nominals binded by ↓ do distinguish them). We can solve this using disjunction to
gather together all previously remembered states.

Theorem 11. M∅(©r ,©k) ≤ HL(↓).
Proof. See the technical appendix.

Finally we arrive to the most interesting question in this section: as we already men-
tioned, M∅(©r ,©k) seems to be weaker than HL(↓) because it allows us to remember that
we have already visited a given state, but we cannot distinguish among different visited
states. Indeed, we can prove that M∅(©r ,©k) is strictly less expressive than HL(↓), but
the proof is slightly involved.

Theorem 12. M∅(©r ,©k) 6= HL(↓).
Proof. Let M1 = 〈ω, R1, ∅, ∅〉 and M2 = 〈ω, R2, ∅, ∅〉, where R1 = {(n,m) | n 6= m} ∪
{(0, 0)} and R2 = {(n,m) | n 6= m} ∪ {(0, 0), (1, 1)} (the models are shown in Figure ??,
the accessibility relation is the non-reflexive transitive closure of the arrows shown in the
picture).

We prove that M1, 0↔M2, 0 showing the winning strategy for duplicator. Intuitively,
the strategy for Duplicator consists in the following idea: whenever one player is in (M1, 0)
the other will be in (M2, 0) or (M2, 1), and conversely whenever a player is in (M1, n),
n > 0 the other will be in (M2, m), m > 1. This is maintained until Spoiler (if ever)
decides to remember a state. Once this is done, then any strategy will be a winning one
for Duplicator.

Being a bit more formal, the winning strategy will have two stages. While Spoiler does
not remember any reflexive state, Duplicator plays with the following strategy: if Spoiler

7

Figure 1: Two M∅(©r ,©k)-bisimilar models

chooses 0 in any model, Duplicator chooses 0 in the other one; if Spoiler chooses n > 0 in
M1, Duplicator plays n + 1 in M2; if Spoiler chooses n > 0 in M2, Duplicator plays n− 1
in M1.

Notice that with this strategy Spoiler chooses a reflexive state if and only if Duplicator
answers with a reflexive one. This is clearly a winning strategy. If ever Spoiler decides to
remember a reflexive state, Duplicator starts using the following strategy: if Spoiler selects
a state n, Duplicator answers with an agreeing state m of the opposite model. Notice that
this is always possible since both n and m see infinitely many non remembered states and
at least one remembered state. Therefore M1, w↔M2, w.

On the other hand, let ϕ be the formula ↓i.〈r〉(i ∧ 〈r〉(¬i ∧ ↓i.〈r〉i)). It is easy to see
that M1, w 6|= ϕ but M2, w |= ϕ.

The basic idea behind the previous proof is that if the relations R1 and R2 extend
the set {(n,m) | n 6= m}, then M∅(©r ,©k) can distinguish between irreflexive and non
irreflexive frames, but it cannot distinguish frames with a different number of reflexive
nodes.

There is a number of interesting remarks to be made above the previous proof. First,
notice that it is essential for the winning strategy of Duplicator that each state in a model is
related to infinitely many others. The question of whether M∅(©r ,©k) < HL(↓) on image-
finite models is still open. Second, notice that the HL(↓) sentence that we used in the
proof uses only one nominal. Hence, we have actually proved that HL1(↓) 6≤ M∅(©r ,©k),
where HL1(↓) is HL(↓) restricted to only one nominal. But actually, it is also the case
that M∅(©r ,©k) 6≤ HL1(↓).
Proposition 13. The logics HL1(↓) and M∅(©r ,©k) are incomparable in terms of expres-
sive power.

Proof. See technical appendix.

Actually, this incomparability result can be extended to HL(↓) restricted to any fixed
number of nominals, by taking cliques of the appropriate size.

Theorem 14. For any fixed k, the logics HLk(↓) and M∅(©r ,©k) are incomparable in
terms of expressive power.

8

We will now briefly discuss the case of M(©r ,©k). As we already mentioned at the be-
ginning of this section, the first required step to compare expressivity is to be able to
define a natural mapping between models of the different logics involved. Consider a
model 〈W, (Rr)r∈rel, V, S〉 for M(©r ,©k); if we want to associate a Kripke model we have
to decide how to deal with the set S. The only natural choice seems to be to extend
the signature with a special propositional variable known, and let V ′ be identical to V
excepts that V ′(known) = S. And the same can be done to obtain a hybrid model from a
M(©r ,©k) model.

Theorem 15. The following results concerning expressive power can be established

1. K over the signature 〈prop∪{known},rel〉 is strictly less expressive than M(©r ,©k)
over the signature 〈prop,rel〉.

2. M(©r ,©k) over the signature 〈prop,rel〉 is strictly less expressive than HL(↓) over
the signature 〈prop ∪ {known},rel,nom〉.

3. M∅(©r ,©k) over the signature 〈prop ∪ {known},rel〉 is equivalent to
M(©r ,©k) over the signature 〈prop,rel〉

Proof. See technical appendix for details.

To close this section, we mention that the satisfaction preserving translations defined
in the proof can actually be used to transfer known results, for example, from HL(↓) to
M(©r ,©k) and M∅(©r ,©k). For instance, both logics are compact and their formulas are
preserved by generated submodels (see [?]).

4 Infinite Models and Undecidability

The last issue that we will discuss in this paper is the undecidability of the satisfiability
problem for both M(©r ,©k) and M∅(©r ,©k). The proof is an adaptation of the proof of
undecidability of HL(↓) presented in [?].

We first prove that both languages lack the finite model property [?].

Theorem 16. There is a formula Inf ∈ M∅(©r ,©k) such that M, w |= Inf implies that
the domain of M is an infinite set.

Proof. The formula Inf states that there is a nonempty subset of W that is an unbounded
strict partial order. See the technical appendix for details.

To prove failure of the finite model property for the case M(©r ,©k) we first notice that
the following lemma is easy to establish (we only state it for the monomodal case; a similar
result is true in the multimodal case). Failure of the finite model property is then a direct
consequence.

9

Lemma 17. Let ϕ be a formula of modal depth d. If 〈W,Rr, V, S〉, w |=(∧d
i=0[r]

i¬©k
)
∧ ϕ then 〈W,Rr, V, ∅〉, w |= ϕ.

Corollary 18. M(©r ,©k) lacks the finite model property.

Proof. Using Lemma ??, one can easily see that the formula Inf ∧ (∧4
i=0[r]

i¬©k)
, where

Inf is the one in the proof of Theorem ??, forces an infinite model.

We now turn to undecidability. We show that M(©r ,©k) and M∅(©r ,©k) are undecid-
able by encoding the ω×ω tiling problem (see [?]). Following the idea in [?], we construct
a spy point over the relation S which has access to every tile. The relations U and R
represent moving up and to the right, respectively, from one tile to the other. We code
each type of tile with a fixed propositional symbol ti. With this encoding we define for
each tiling problem T , a formula ϕT such that the set of tiles T tiles ω × ω iff ϕT has a
model.

Theorem 19. The satisfiability problem for M∅(©r ,©k) is undecidable.

Proof. See the technical appendix for details.

Corollary 20. The satisfiability problem for M(©r ,©k) is undecidable.

Proof. Using Lemma ?? and the formula ϕT in Theorem ??, we obtain a formula ψ such
that if M, w |= ψ then M is a tiling of ω × ω. For the converse, we can build exactly the
same model as in the above proof.

5 Conclusions and Further Work

In this paper we investigate two members of a family of logics that we called memory logics.
These logics were inspired by the hybrid logic HL(↓): the ↓ operator can be thought of
as a storage command, and our aim is to carry this idea further investigating different
ways in which information can be stored. We have proved that, in terms of expressive
power, the memory logics M(©r ,©k) and M∅(©r ,©k) lay between the basic modal logic
K and the hybrid logic HL(↓). Unluckily, the reduced expressive power is not sufficient
to ensure good computational behavior: both M(©r ,©k) and M∅(©r ,©k) fail to have the
finite model property and moreover their satisfiability problems are undecidable.

Despite the negative result concerning decidability, we believe that the new perspective
we pursue in this paper is appealing. Clearly, it opens up the way to many new interesting
modal languages (we discuss some examples in Sect. 1). As in the case of modal and hybrid
languages, all of them seem to share some common behavior, and the challenge is now to
discover and understand it.

Much work rest to be done. We are currently working on complete axiomatizations
of M(©r ,©k) and M∅(©r ,©k), and on model theoretic characterizations. Extending the
language with nominals is a natural step, and then adapting the internalized hybrid tableau

10

method [?] to the new languages is straightforward. More interesting is to explore new
languages of the family (like (push), (pop), or (forget)), and interaction between the
memory operators and the modalities.

For example, if we restrict the class of models to those in which we are forced to
memorize the current state each time we take a step via the accessibility relation, then
the logic turns decidable (even though it is still strictly more expressive than K). More
precisely, changing the semantic definition of 〈r〉 to be

〈W, (Rr)r∈rel, V, S〉, w |= 〈r〉ϕ iff ∃w′ ∈ W,Rr(w,w′) and
〈W, (Rr)r∈rel, V, S ∪ {w}〉, w′ |= ϕ

and calling the resulting logic M−(©r ,©k), then K < M−(©r ,©k) < M(©r ,©k). More-
over, M−(©r ,©k) has the bounded tree model property: every satisfiable formula ϕ of
M−(©r ,©k) is satisfied in a tree of size bounded by a computable funcion over the size of
ϕ. Hence, the satisfiability problem of M−(©r ,©k) is decidable.

The work presented in this paper is somehow related in spirit with the work on Dynamic
Epistemic Logic and other update logics [?, ?], but as we discuss in the introduction, our
inspiration was rooted in a new interpretation of the ↓ binder.

11

References

[1] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characterization, interpolation
and complexity. The Journal of Symbolic Logic, 66(3):977–1010, 2001.

[2] P. Blackburn. Internalizing labelled deduction. Journal of Logic and Computation,
10(1):137–168, 2000.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
2001.

[4] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and
Information, 4:251–272, 1995.

[5] E. Börger, E. Grädel, and Y. Gurevich. The classical decision problem. Springer Verlag,
1997.

[6] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag, 1984.

[7] Jelle Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, University of Amster-
dam, 1999. ILLC Dissertation series DS-1999-01.

[8] Johan van Benthem. An essay on sabotage and obstruction. In Mechanizing Mathe-
matical Reasoning, pages 268–276, 2005.

Technical Appendix

Theorem ??. The translation Tr, taking M(©r ,©k) formulas over the signature 〈prop,
rel〉 to HL(↓) sentences over the signature 〈prop,rel,nom〉 is defined for any finite set
N ⊆ nom as follows:

TrN(p) = p p ∈ prop
TrN(©k) =

∨
i∈N i

TrN(¬ϕ) = ¬TrN(ϕ)
TrN(ϕ1 ∧ ϕ2) = TrN(ϕ1) ∧ TrN(ϕ2)

TrN(〈r〉ϕ) = 〈r〉TrN(ϕ)
TrN(©rϕ) = ↓i.TrN∪{i}(ϕ) where i /∈ N .

A simple induction shows that M, w |= ϕ iff M, g, w |= Tr∅(ϕ), for any g.

Proposition ??. As we said, HL1(↓) 6≤ M∅(©r ,©k) is a direct consequence of the proof
of Theorem ??. To prove M∅(©r ,©k) 6≤ HL1(↓), let M1 = 〈{1, 2, 3}, {(i, j) | 1 ≤ i, j ≤
3}, ∅, ∅〉 (a clique of size 3) and M2 = 〈{1, 2}, {(i, j) | 1 ≤ i, j ≤ 2}, ∅, ∅〉 (a clique of size
2). It is easy to check that M1, 1↔HL1(↓)M2, 1. However, the formula ϕ = ©r 〈r〉(¬©k ∧
©r 〈r〉(¬©k ∧©r 〈r〉¬©k)) distinguishes the models: M1, 1 |= ϕ but M2, 1 6|= ϕ.

12

Theorem ??. All proofs are similar to (and sometimes easier than) the ones presented
above. We only discuss 2. To prove M(©r ,©k) ≤ HL(↓) (over the appropriate signatures)
we adapt the translation Tr with the following clause for ©k

TrN(©k) =
(∨

i∈N i
) ∨ known.

HL(↓) 6≤ M(©r ,©k) can be shown using the following models. LetM1 = 〈{w}, {(w,w)}, ∅, {w}〉
and M2 = 〈{u, v}, {(u, v), (v, u)}, ∅, {u, v}〉. Duplicator always wins on E(M1,M2, w, u)
and thusM1, w↔M(©r ,©k)

M2, u. On the other hand,M′
1, w |=HL(↓) ↓i.〈r〉i butM′

2, u 6|=HL(↓)
↓i.〈r〉i, for M′

1,M′
2 the models corresponding to M1 and M2.

Theorem ??. Consider the following formulas:

(Back) p ∧ [r]¬p ∧ 〈r〉> ∧©r ([r]〈r〉©k)
(Spy) ©r ([r][r](¬p →©r (〈r〉(p ∧©k ∧ 〈r〉(¬p ∧©k)))))
(Irr) [r]©r¬〈r〉©k

(Succ) [r]〈r〉¬p
(3cyc) ¬(〈r〉©r 〈r〉(¬p ∧ 〈r〉(¬p ∧ ¬©k ∧ 〈r〉©k)))
(Tran) [r]©r [r](¬p → ([r](¬p → (©r 〈r〉(p ∧ 〈r〉(©k ∧ 〈r〉©k))))))

Let Inf be Back∧ Spy∧ Irr∧ Succ∧ 3cyc∧Tran. Let M = 〈W,R, V, ∅〉. We show that
if M, w |= Inf, then W is infinite.

Suppose M, w |= Inf. Notice that if ©k holds in a state, is because it was previously
remembered by the evaluating formula. Let B = {b ∈ W | wRb}. Because Back is satisfied,
w 6∈ B, B 6= ∅ and for all b ∈ B, bRw. Because Spy is satisfied, if a 6= w and a is a successor
of an element of B then a is also an element of B. As Irr is satisfied at w, every state in
B is irreflexive. As Succ is satisfied at w, every point in B has a successor distinct from
w. As 3cyc is satisfied, there cannot be 3 different elements in B forming a cycle, and this
sentence together with Tran force R to transitively order B.

It follows that B is an unbounded strict partial order, hence infinite, and so is W .

Theorem ??. Let T = {T1, . . . , Tn} be a set of tile types. Given a tile type Ti, u(Ti), r(Ti),
d(Ti), l(Ti) will represent the colors of the up, right, down and left edges of Ti r espectively.

13

Define

(Back) p ∧ [S]¬p ∧ 〈S〉> ∧©r ([S]〈S〉©k) ∧©r ([S][S]©k)
(Spy) ©r [S][†]©r 〈S〉(©k ∧ p ∧ 〈S〉(©k ∧ ¬p)), where † ∈ {U,R}

(Grid) [S][U]¬p ∧ [S][R]¬p ∧ [S]〈U〉> ∧ [S]〈r〉>
(Func) ©r [S]©r 〈†〉©r 〈S〉〈S〉(©k ∧ 〈†〉©k ∧ [†]©k), where † ∈ {U,R}

(Irr) [S]©r [†]¬©k , where † ∈ {U,R}
(2cyc) [S]©r [†][†]¬©k , where † ∈ {U,R}

(Confluent) [S]©r 〈U〉〈r〉©r 〈S〉〈S〉(©k ∧ 〈U〉〈r〉©k ∧ 〈r〉〈U〉©k)
(UR-Irr) [S]©r [U][R]¬©k

(UR-2cyc) [S]©r [U][R][U][R]¬©k
(Unique) [S]

(∨
1≤i≤n ti ∧

∧
1≤i<j≤n(ti → ¬tj)

)

(Vert) [S]
∧

1≤i≤n

(
ti → 〈U〉∨1≤j≤n,u(Ti)=d(Tj)

tj

)

(Horiz) [S]
∧

1≤i≤n

(
ti → 〈r〉∨1≤j≤n,r(Ti)=l(Tj)

tj

)

Let the formula ϕT be the conjunction of all the above formulas. We show that T tiles
ω × ω iff ϕT is satisfiable.

Suppose M, w |= ϕT . Observe that (Back) and (Spy) impose w to be a spy point over
all its S-accessible states of M. These S-accessible states will be the tiles. From this it
follows that [S]ψ holds at w iff ψ is true at every tile. Additionally, 〈S〉〈S〉ψ holds at tile
v iff ψ is true at some tile (maybe the same one).

Taking the above points into account, one can establish the following. (Grid) states
that from every tile there is another tile moving up (that is, following the U -relation). The
same holds for the right direction (following the R-relation). (Func) forces that U and R
are both functionals, given that (Irr) and (2cyc) guarantee irreflexivity and asymmetry of
U and R respectively. (Confluent) imposes that the tiles are arranged in a grid pattern.
To make its job, (Confluent) needs the composed relation U ◦ R to be irreflexive and
asymmetric, and this is done by (UR-Irr) and (UR-2cyc) respectively.

All the formulas we discuss up to now configure the grid. The last three ensure that
every tile has a unique type ti, and that the colors of the tiles match properly. From this,
it easily follows that M is a tiling of ω × ω.

For the converse, suppose f : ω × ω → T is a tiling of ω × ω. We define the model
M = 〈W, {S, U,R}, V, ∅〉 as follows:

• W = ω × ω ∪ {w}
• S = {(w, v), (v, w) | v ∈ ω × ω} (hence w will act as the spy point)

• U = {((x, y), (x, y + 1)) | x, y ∈ ω}
• R = {((x, y), (x + 1, y)) | x, y ∈ ω}
• V (p) = {w}; V (ti) = {x | x ∈ ω × ω, f(x) = Ti}

The reader may verify that, by construction, M, w |= ϕT .

14

