
Using Logic in the Generation of Referring
Expressions

Carlos Areces1, Santiago Figueira?2, and Daniel Goŕın3

1 INRIA Nancy, Grand Est, France
areces@loria.fr

2 Departamento de Computación, FCEyN, UBA and CONICET, Argentina
3 Departamento de Computación, FCEyN, UBA, Argentina

{santiago,dgorin}@dc.uba.fr

Abstract. The problem of generating referring expressions (GRE) is
an important task in natural language generation. In this paper, we
advocate for the use of logical languages in the output of the content
determination phase (i.e., when the relevant features of the object to
be referred are selected). Many different logics can be used for this and
we argue that, for a particular application, the actual choice shall con-
stitute a compromise between expressive power (how many objects can
be distinguished), computational complexity (how difficult it is to deter-
mine the content) and realizability (how often will the selected content
be realized to an idiomatic expression). We show that well-known results
from the area of computational logic can then be transferred to GRE.
Moreover, our approach is orthogonal to previous proposals and we illus-
trate this by generalizing well-known content-determination algorithms
to make them parametric on the logic employed.

1 Generating Referring Expressions

The generation of referring expressions (GRE) –given a context and an element
in that context generate a grammatically correct expression in a given natural
language that uniquely represents the element– is a basic task in natural language
generation, and one of active research (see [4,5,6,20,8] among others). Most of the
work in this area is focused on the content determination problem (i.e., finding
a collection of properties that singles out the target object from the remaining
objects in the context) and leaves the actual realization (i.e., expressing a given
content as a grammatically correct expression) to standard techniques4.

However, there is yet no general agreement on the basic representation of
both the input and the output to the problem; this is handled in a rather ad-hoc
way by each new proposal instead.

Krahmer et al. [17] make the case for the use of labeled directed graphs in the
context of this problem: graphs are abstract enough to express a large number of

? S. Figueira was partially supported by CONICET (grant PIP 370) and UBA (grant
UBACyT 20020090200116).

4 For exceptions to this practice see, e.g., [16,21]

2 Carlos Areces, Santiago Figueira, and Daniel Goŕın

domains and there are many attractive, and well-known algorithms for dealing
with this type of structures. Indeed, these are nothing other than an alternative
representation of relational models, typically used to provide semantics for formal
languages like first and higher-order logics, modal logics, etc. Even valuations,
the basic models of propositional logic, can be seen as a single-pointed labeled
graph. It is not surprising then that they are well suited to the task.

In this article, we side with [17] and use labeled graphs as input, but we argue
that an important notion has been left out when making this decision. Exactly
because of their generality, graphs do not define, by themselves, a unique notion
of sameness. When do we say that two nodes in the graphs can or cannot be
referred uniquely in terms of their properties? This question only makes sense
once we fix a certain level of expressiveness which determines when two graphs,
or two elements in the same graph, are equivalent.

Expressiveness can be formalized using structural relations on graphs (iso-
morphisms, etc.) or, alternatively, logical languages. Both ways are presented
in §2, where we also discuss how fixing a notion of expressiveness impacts on the
number of instances of the GRE problem that have a solution; the computational
complexity of the GRE algorithms involved; and the complexity of the surface
realization problem. We then investigate the GRE problem in terms of different
notions of expressiveness. We first explore in §3 how well-known algorithms from
computational logic can be applied to GRE. This is a systematization of the ap-
proach of [1], and we are able to answer a complexity question that was left open
there. In §4 we take the opposite route: we take the well-known GRE-algorithm
of [17], identify its underlying expressivity and rewrite in term of other logics.
We then show in §5 that both approaches can be combined and finally discuss in
§6 the size of an RE relative to the expressiveness employed. We conclude in §7
with a short discussion and prospects for future work.

2 Measuring Expressive Power

Relational structures are very suitable for representing situations or scenes. A
relational structure (also called “relational model”) is a non-empty set of objects
–the domain– together with a collection of relations, each with a fixed arity.

Formally, assume a fixed and finite (but otherwise arbitrary) vocabulary of
n-ary relation symbols.5 A relational model M is a tuple 〈∆, || · ||〉 where ∆ is
a nonempty set, and || · || is a suitable interpretation function, that is, ||r|| ⊆ ∆n

for every n-ary relation symbol r in the vocabulary. We say that M is finite
whenever ∆ is finite. The size of a modelM is the sum #∆+ #|| · ||, where #∆
is the cardinality of ∆ and #|| · || is the sum of the sizes of all relations in || · ||.

Figure 1 below shows how we can represent a scene as a relational model.
Intuitively, a, b and d are dogs, while c and e are cats; d is a small beagle; b and
c are also small. We read sniffs(d, e) as “d is sniffing e”.

Logical languages are fit for the task of (formally) describing elements of
a relational structure. Consider, e.g., the classical language of first-order logic

5 Constants and function symbols can be represented as relations of adequate arity.

Using Logic in the Generation of Referring Expressions 3

∆ = {a, b, c, d, e}
||dog || = {a, b, d}
||cat || = {c, e}

||beagle|| = {d}
||small || = {b, c, d}
||sniffs|| = {(a, a), (b, a), (c, b), (d, e), (e, d)}

a

dog

b

dog
small

c

cat
small

d

dog
beagle
small

e

cat

sniffs

sniffs sniffs

sniffs

sniffs

Fig. 1. Graph representation of scene S.

(with equality), FO, given by:

> | xi 6≈ xj | r(x̄) | ¬γ | γ ∧ γ′ | ∃xi.γ

where γ, γ′ ∈ FO, r is an n-ary relation symbol and x̄ is an n-tuple of variables.
As usual, γ ∨ γ′ and ∀x.γ are short for ¬(¬γ ∧ ¬γ′) and ¬∃x.¬γ, respectively.
Formulas of the form >, xi 6≈ xj and r(x̄) are called atoms.6 Given a relational
model M = 〈∆, || · ||〉 and a formula γ with free variables7 among x1 . . . xn, we
inductively define the extension or interpretation of γ as the set of n-tuples
||γ||n ⊆ ∆n that satisfy:

||>||n = ∆n ||xi 6≈ xj ||n = {ā | ā∈∆n, ai 6= aj}
||¬δ||n = ∆n \ ||δ||n ||r(xi1 . . . xik)||n = {ā | ā∈∆n, (ai1 . . . aik)∈||r||}
||δ ∧ θ||n = ||δ||n ∩ ||θ||n ||∃xl.δ||n = {ā | āe ∈ ||δ′||n+1 for some e}

where 1 ≤ i, j, i1, . . . , ik ≤ n, ā = (a1 . . . an), āe = (a1 . . . an, e) and δ′ is obtained
by replacing all occurrences of xl in δ by xn+1. When the cardinality of the tuples
involved is known from the context we will just write ||γ|| instead of ||γ||n.

With a language syntax and semantics in place, we can now formally define
the problem of L-GRE for a target set of elements T (we slightly adapt the
definition in [1]):

L-GRE Problem

Input: a model M = 〈∆, || · ||〉 and a nonempty target set T ⊆ ∆.
Output: a formula ϕ ∈ L such that ||ϕ|| = T if it exists, and ⊥ otherwise.

When the output is not ⊥, we say that ϕ is an L-referring expression (L-RE)
for T in M. Simply put then, the output of the L-GRE problem is a formula
of L whose interpretation in the input model is the target set, if such a formula
exists. This definition applies also to the GRE for objects of the domain by
taking a singleton set as target.

6 For technical reasons, we include the inequality symbol 6≈ as primitive. Equality can
be defined using negation.

7 W.l.o.g. we assume that no variable appears both free and bound, that no variable
is bound twice, and that the index of bound variables in a formula increases from
left to right.

4 Carlos Areces, Santiago Figueira, and Daniel Goŕın

By using formulas with n free variables one could extend this definition to
describe n-ary relations; but here we are only interested in describing subsets of
the domain. Actually, we shall restrict our attention a little further:

Convention 1. We will only consider relational models with unary and binary
relation symbols (i.e., labeled graphs). We will consistently use p for a unary
relation symbol (and called it a proposition) and r for a binary relation symbol.

This convention captures the usual models of interest when describing scenes as
the one presented in Figure 1. Accommodating relations of higher arity in our
theoretical framework is easy, but it might affect computational complexity.

2.1 Choosing the Appropriate Language

Given a model M, there might be an infinite number of formulas that uniquely
describe a target (even formulas which are not logically equivalent might have
the same interpretation once a model is fixed). Despite having the same inter-
pretation in M, they may be quite different with respect to other parameters.

As it is well known in the automated text generation community, different re-
alizations of the same content might result in expressions which are more or less
appropriate in a given context. Although, as we mentioned in the introduction,
we will only address the content determination part (and not the surface real-
ization part) of the GRE problem, we will argue that generating content using
languages with different expressive power can have an impact in the posterior
surface generation step.

Let us consider again the scene in Figure 1. Formulas γ1–γ4 shown in Table 1
are all such that γi uniquely describes b (i.e., ||γi|| = {b}) in model S. Arguably,
γ1 can be easily realized as “the small dog that sniffs a dog”. Syntactically, γ1 is
characterized as a positive, conjunctive, existential formula (i.e., it contains no
negation and uses only conjunction and existential quantification). Expressions
with these characteristics are, by large, the most commonly found in corpora
as those compiled in [22,9,7]. Formula γ2, on the other hand, contains negation,
disjunction and universal quantification. It could be realized as “the small dog
that only sniffs things that are not cats” which sounds unnatural. Even a small
change in the form of γ2 makes it more palatable: rewrite it using ∃, ¬, and ∧
to obtain “the small dog that is not sniffing a cat”. Similarly, γ3 and γ4 seem
computationally harder to realize than γ1: γ3 contains an inequality (“the dog
sniffing another dog”), while the quantified object appears in the first argument
position in the binary relation in γ4 (“the dog that is sniffed by a small cat”).

Summing up, we can ensure, already during the content determination phase,
certain properties of the generated referring expression by paying attention to
the formal language used in the representation. And we can do this, even before
taking into account other fundamental linguistics aspects that will make certain
realization preferable like saliency, the cognitive capacity of the hearer (can she
recognize a beagle from another kind of dog?), etc.

As a concrete example, let FO− be the fragment of FO-formulas where the
operator ¬ does not occur (but notice that atoms xi 6≈ xj are permitted). By

Using Logic in the Generation of Referring Expressions 5

γ1 : dog(x) ∧ small(x) ∧ ∃y.(sniffs(x, y) ∧ dog(y))

γ2 : dog(x) ∧ small(x) ∧ ∀y.(¬cat(y) ∨ ¬sniffs(x, y))

γ3 : dog(x) ∧ ∃y.(x 6≈ y ∧ dog(y) ∧ sniffs(x, y))

γ4 : dog(x) ∧ ∃y.(cat(y) ∧ small(y) ∧ sniffs(y, x))

Table 1. Alternative descriptions for object b in the model shown in Figure 1.

restricting content determination to FO−, we ensure that formulas like γ2 will
not be generated. If we ban 6≈ from the language, γ3 is precluded.

The fact that the representation language used has an impact on content
determination is obvious, but it has not received the attention it deserves. Are-
ces et al. [1] use different description logics (a family of formal languages used
in knowledge representation, see [2]) to classify, and give a formal framework to
previous work on GRE. Let us quickly introduce some of these languages as we
will be mentioning them in future sections. Using description logics instead of
FO fragments is just a notational issue, as most description logics can be seen
as implicit fragments of FO. For example, the language of the description logic
ALC, syntactically defined as the set of formulas,

> | p | ¬γ | γ ∧ γ′ | ∃r.γ

(where p is a propositional symbol, r a binary relational symbol, and γ, γ′ ∈
ALC) corresponds to a syntactic fragment of FO without 6≈, as shown by the
standard translation τx:

τxi
(>) = > τxi

(γ1 ∧ γ2) = τxi
(γ1) ∧ τxi

(γ2)
τxi(p) = p(xi) τxi(∃r.γ) = ∃xi+1.(r(xi, xi+1) ∧ τxi+1(γ))

τxi(¬γ) = ¬τxi(γ)

Indeed, given a relational model M, the extension of an ALC formula ϕ
in M exactly coincides with the extension of τx1

(ϕ) (see, e.g., [2]). Thanks
to this result, for any formula ϕ of ALC and its sublanguages we can define
||ϕ|| = ||τx1(ϕ)||. Coming back to our previous example, by restricting content
generation to ALC formulas (or equivalently, the corresponding fragment of FO)
we would avoid formulas like γ3 (no equality) and γ4 (quantified element appears
always in second argument position).

Generation is discussed in [1] in terms of different description logics like ALC
and EL (ALC without negation). We will extend the results in that paper, con-
sidering for instance EL+ (ALC with negation allowed only in front of unary
relations) but, more generally, we take a model theoretic approach and argue
that the primary question is not whether one should use one or other (descrip-
tion) logic for content generation, but rather which are the semantic differences
one cares about. This determines the required logical formalism but also impacts
on both the content determination and the surface realization problems. Each
logical language can be seen as a compromise between expressiveness, realiz-
ability and computational complexity. The appropriate selection for a particular
GRE task should depend on the actual context.

6 Carlos Areces, Santiago Figueira, and Daniel Goŕın

L atomL atomR relL relR injL injR
FO × × × × × ×
FO− × × ×
ALC × × × ×
EL × ×
EL+ × × ×

Table 2. L-simulations for several logical languages L.

2.2 Defining Sameness

Intuitively, given a logical language L we say that an object u in a modelM1 is
similar in L to an object v in a model M2 whenever all L-formulas satisfied by
u are also satisfied by v. Formally, letM1 = 〈∆1, || · ||1〉 andM2 = 〈∆2, || · ||2〉 be
two relational models with u ∈ ∆1 and v ∈ ∆2; we follow the terminology of [1]
and say that u is L-similar to v (notation u

L
 v) whenever u ∈ ||γ||1 implies

v ∈ ||γ||2, for every γ ∈ L. It is easy to show that L-similarity is reflexive for all
L, and symmetric for languages that contain negation.

Observe that L-similarity captures the notion of ‘identifiability in L’. If we
take M1 and M2 to be the same model, then an object u in the model can
be uniquely identified using L if there is no object v different from u such that
u
L
 v. In other words, if there are two objects u and v in a modelM such that

u
L
 v, then the L-GRE problem with input M and target T = {u} will not

succeed since for all formulas γ ∈ L we have {u, v} ⊆ ||γ|| 6= {u}.
The notion of L-similarity then, gives us a handle on the L-GRE problem.

Moreover, we can recast this definition in a structural way, so that we do not
need to consider infinitely many L-formulas to decide whether u is L-similar to
v. We can reinterpret L-similarity in terms of standard model-theoretic notions
like isomorphisms or bisimulations which describe structural properties of the
model, instead. Given two models 〈∆1, ||·||1〉 and 〈∆2, ||·||2〉, consider the following
properties of a binary relation ∼ ⊆ ∆1 ×∆2 (cf. Convention 1):

atomL : If u1∼u2, then u1 ∈ ||p||1 ⇒ u2 ∈ ||p||2
atomR : If u1∼u2, then u2 ∈ ||p||2 ⇒ u1 ∈ ||p||1
relL : If u1∼u2 and (u1, v1) ∈ ||r||1, then ∃v2 s.t. v1∼v2 and (u2, v2) ∈ ||r||2
relR : If u1∼u2 and (u2, v2) ∈ ||r||2, then ∃v1 s.t. u1∼v1 and (u1, v1) ∈ ||r||1
injL : ∼ is an injective function (when restricted to its domain)
injR : ∼−1 is an injective function (when restricted to its domain)

We will say that a non-empty binary relation ∼ is an L-simulation when it
satisfies the properties indicated in Table 2. For example, a non-empty binary
relation that satisfies atomL, and relL is an EL-simulation, as indicated in
row 4 of Table 2. Moreover, we will say that an object v L-simulates u (notation
u
L→v) if there is a relation ∼ satisfying the corresponding properties such that

u ∼ v. The following is a fundamental model-theoretic result:

Theorem 1. IfM1 = 〈∆1, ||·||1〉 andM2 = 〈∆2, ||·||2〉 are finite models, u ∈ ∆1

and v ∈ ∆2, then u
L
 v iff u

L→v (for L ∈ {FO,FO−,ALC, EL, EL+}).

Using Logic in the Generation of Referring Expressions 7

Proof. Some results are well-known:
FO→ is isomorphism on labeled graphs [11];

ALC→ corresponds to the notion of bisimulation [3, Def. 2.16];
EL→ is a simulation as

defined in [3, Def. 2.77]. The remaining cases are simple variations of these.

Therefore, on finite models8 simulations capture exactly the notion of simi-
larity. The right to left implication does not hold in general on infinite models.
L-simulations allow us to determine, in an effective way, when an object is

indistinguishable from another in a given model with respect to L.
For example, we can verify that a

EL→ b in the model of Figure 1 (the relation
∼ = {(a, a), (a, b)} satisfies atomL and relL). Using Theorem 1 we conclude
that there is no EL-description for a, since for any EL-formula γ, if a ∈ ||γ||, then
b ∈ ||γ||. Observe that b 6EL→ a, since (again applying Theorem 1), b ∈ ||small(x)||
but a /∈ ||small(x)||. If one chooses a language richer than EL, such as EL+, one
may be able to describe a: take, for instance the EL+-formula dog(x)∧¬small(x).

As we will discuss in the next section, simulation gives us an efficient, com-
putationally feasible approach to the L-GRE problem. Algorithms to compute
many kinds of L-simulations are well known (see, [15,18,14,10]), and for many
languages (e.g., ALC, ALC with inverse relations, EL+ and EL) they run in
polynomial time (on the other hand, no polynomial algorithm for FO- or FO−-
simulation is known and even the exact complexity of the problem in these cases
is open [13]).

3 GRE via Simulator Sets

In this section we will discuss how to solve the L-GRE problem using simulation.
Given a model M = 〈∆, || · ||〉, Theorem 1 tells us that if two distinct elements
u and v in ∆ are such that u

L→v then every L-formula that is true at u is also
true at v. Hence there is no formula in L that can uniquely refer to u. From this
perspective, knowing whether the model contains an element that is L-similar
but distinct from u is equivalent to decide whether there exists an L-RE for u.

Assume a fixed language L and a model M. Suppose we want to refer to an
element u in the domain of M. We would like to compute the simulator set of
u defined as simML (u) = {v ∈ ∆ | u L→v}. When the model M is clear from the
context, we just write simL. If simML (u) is not the singleton {u}, the L-GRE
problem with target {u} in M will fail.

An algorithm is given in [14] to compute simEL+(v) for each element v of a
given finite model M = 〈∆, || · ||〉 in time O(#∆×#|| · ||). Intuitively, this algo-
rithm defines S(v) as a set of candidates for simulating v and successively refines
it by removing those which fail to simulate v. In the end, S(v) = simEL+(v).
The algorithm can be adapted to compute simL for many other languages L. In
particular, we can use it to compute simEL in polynomial time which will give
us the basic algorithm for establishing an upper bound to the complexity of the
EL-GRE problem –this will answer an open question of [1]. The pseudo-code
is shown in Algorithm 1, which uses the following notation: P is a fixed set of

8 Finiteness is not the weakest hypothesis, but it is enough for our development.

8 Carlos Areces, Santiago Figueira, and Daniel Goŕın

unary relation symbols, for v ∈ ∆, let P (v) = {p ∈ P | v ∈ ||p||} and let also
sucr(v) = {u ∈ ∆ | (v, u) ∈ ||r||} for r a binary relation symbol.

Algorithm 1: Computing EL-similarity

input : a finite model M = 〈∆, || · ||〉
output: ∀v ∈ ∆, the simulator set simMEL(v) = S(v)

foreach v ∈ ∆ do
S(v) := {u ∈ ∆ | P (v) ⊆ P (u)}

while ∃r, u, v, w : v ∈ sucr(u), w ∈ S(u), sucr(w) ∩ S(v) = ∅ do
S(u) := S(u) \ {w}

The algorithm is fairly straightforward. We initialize S(v) with the set of all
elements u ∈ ∆ such that P (v) ⊆ P (u), i.e., the set of all elements satisfying at
least the same unary relations as v (this guarantees that property atomL holds).
At each step, if there are three elements u, v and w such that for some relation r,
(u, v) ∈ ||r||, w ∈ S(u) (i.e., w is a candidate to simulate u) but sucr(w)∩S(v) = ∅
(there is no element w′ such that (w,w′) ∈ ||r|| and w′ ∈ S(v)) then clearly
condition relL is not satisfied under the supposition that simEL = S. S is ‘too
big’ because w cannot simulate u. Hence w is removed from S(u).

Algorithm 1 will only tell us whether an EL-RE for an element u exists
(that is, whether simEL(u) = {u} or not). It does not compute an EL-formula
ϕ that uniquely refers to v. But we can adapt it to obtain such a formula.
Algorithm 1’s main strategy to compute simulations is to successively refine an
over-approximation of the simulator sets. The “reason” behind each refinement
can be encoded using an EL-formula. Using this insight, one can transform an
algorithm that computes L-simulator sets with a similar strategy, into one that
additionally computes an L-RE for each set.

Algorithm 2 shows a transformed version of Algorithm 1 following this prin-
ciple. The idea is that each node v ∈ ∆ is now tagged with a formula F (v) of EL.
The formulas F (v) are updated along the execution of the loop, whose invariant
ensures that v ∈ ||F (v)|| and ||F (u)|| ⊆ S(u) hold for all u, v ∈ ∆.

Initially F (v) is the conjunction of all the unary relations that satisfy v (if
there is none, then F (v) = >). Each time the algorithm finds elements r, u, v, w
such that (u, v) ∈ ||r||, w ∈ S(u) and sucr(w) ∩ S(v) = ∅, it updates F (u) to
F (u) ∧ ∃r.F (v). Again this new formula ϕ is in EL and it can be shown that
v ∈ ||ϕ|| and w /∈ ||ϕ||, hence witnessing that v

EL
 w is false.

Algorithm 2 can be easily modified to calculate the EL+-RE of each simulator
set simEL+ by adjusting the initialization: replace ⊆ by = in the initialization
of S(v) and initialize F (v) as

∧(
P (v) ∪ P (v)

)
, where P (v) = {¬p | v /∈ ||p||}.

With a naive implementation Algorithm 2 executes in time O(#∆3× #|| · ||2)
providing a polynomial solution to the EL and EL+-GRE problems. Algorithm 1
can be transformed to run with a lower complexity as in shown in [14]; moreover
this version of the algorithm can be adapted to compute EL- and EL+-RE for

Using Logic in the Generation of Referring Expressions 9

Algorithm 2: Computing EL-similarity and EL-RE

input : a finite model M = 〈∆, || · ||〉
output: ∀v ∈ ∆, a formula F (v) ∈ EL, and the simulator set S(v) such that

||F (v)|| = S(v) = simEL(v)

foreach v ∈ ∆ do
S(v) := {u ∈ ∆ | P (v) ⊆ P (u)};
F (v) :=

∧
P (v);

while ∃r, u, v, w : v ∈ sucr(u), w ∈ S(u), sucr(w) ∩ S(v) = ∅ do
invariant ∀u, v : ||F (u)|| ⊆ S(u) ∧ v ∈ ||F (v)||
S(u) := S(u) \ {w};
if ∃r.F (v) is not a conjunct of F (u) then

F (u) := F (u) ∧ ∃r.F (v);

an arbitrary subset of the domain of 〈∆, || · ||〉 in O(#∆×#|| · ||) steps. We shall
skip the details.

Theorem 2. The EL and EL+-GRE problems over M = 〈∆, || · ||〉 have com-
plexity O(#∆×#|| · ||).

Theorem 2 answers a question left open in [1]: the EL-GRE problem can be
solved in polynomial time. Note, however, that this result assumes a convenient
representation of formulas like, for example, directed acyclic graphs, to ensure
that each step of the formula construction can be done in O(1). In §6 we will
take a closer look at the issue and its relation to the size of the smallest L-RE.

Algorithm 2 was obtained by adding formula annotations to a standard
‘EL-simulation-minimization’ algorithm. Given an L-simulation-minimization,
we can typically adapt it in an analogous way to obtain an L-GRE algorithm.
The obtained algorithm computes L-REs for every element of the domain si-
multaneously. This will make it particularly suitable for applications with static
domains requiring references to many objects. Moreover, the algorithm can be
adapted to dynamic domains by using techniques used to recompute simulations
(see [19]), so that only those RE that were affected by a change in the domain
need to be recomputed.

We have not addressed so far other relevant issues of the GRE problem be-
sides computational complexity. In particular, Algorithm 2 pays no attention to
the use of preferences among relations when generating an RE (i.e., preferring the
selection of certain attributes over others, when possible). While there is room
for improvement (e.g., making a weighted choice instead of the non-deterministic
choice when choosing elements in the main loop of the algorithm), support for
preferences is not one of the strong points of this family of algorithms. We con-
sider algorithms with strong support for preferences in the following section.

4 GRE via Building Simulated Models

Krahmer et al. [17] introduce an algorithm for content determination based
on the computation of subgraph isomorphisms. It is heavily regulated by cost

10 Carlos Areces, Santiago Figueira, and Daniel Goŕın

functions and is therefore apt to implement different preferences. In fact, they
show that using suitable cost functions it can simulate most of the previous
proposals. Their algorithm takes as input a labeled directed graph G and a node
e and returns, if possible, a connected subgraph H of G, containing e and enough
edges to distinguish e from the other nodes.

In this section we will identify its underlying notion of expressiveness and
will extend it to accommodate other notions. To keep the terminology of [17],
in what follows we may alternatively talk of labeled graphs instead of relational
models. The reader should observe that they are essentially the same mathe-
matical object, but notice that in [17], propositions are encoded using looping
binary relations (e.g., they write dog(e, e) instead of dog(e)).

The main ideas of their algorithm can be intuitively summarized as follows.
Given two labeled graphs H and G, and vertices v of H and w of G, we say that
the pair (v,H) refers to the pair (w,G) iff H is connected and H can be “placed
over” G in such a way that: 1) v is placed over w; 2) each node of H is placed over
a node of G with at least the same unary predicates (but perhaps more); and 3)
each edge from H is placed over an edge with the same label. Furthermore, (v,H)
uniquely refers to (w,G) if (v,H) refers to (w,G) and there is no vertex w′ 6= w in
G such that (v,H) refers to (w′, G). The formal notion of a labeled graph being
“placed over” another one is that of subgraph isomorphism: H = 〈∆H , || · ||H〉
can be placed over G iff there is a labeled subgraph (i.e., a graph obtained from
G by possibly deleting certain nodes, edges, and propositions from some nodes)
G′ = 〈∆G′ , || · ||G′〉 of G such that H is isomorphic to G′, which means that there
is a bijection f : ∆H → ∆G′ such that for all vertices u, v ∈ ∆H , u ∈ ||p||H iff
f(u) ∈ ||p||G′ and (u, v) ∈ ||r||H iff (f(u), f(v)) ∈ ||r||G′ .

v

dog

v

dog

sniffs

dog

v

dog
small

sniffs
v

dog cat
small

sniffs

(i) (ii) (iii) (iv)

Fig. 2. Some connected subgraphs (v,H) of scene S in Figure 1.

As an example, consider the relational model depicted in Figure 1 as a labeled
graph G, and let us discuss the pairs of nodes and connected subgraphs (v,H)
shown in Figure 2. Clearly, (i) refers to the pair (w,G) for any node w ∈ {a, b, d};
(ii) refers to (w,G) for w ∈ {b, d}; and both (iii) and (iv) uniquely refer to (b,G).
Notice that (i)–(iv) can be respectively realized as “a dog”, “a dog that sniffs
something”, “a small dog that sniffs a dog” (cf. γ1 in Table 1) and “the dog that
is sniffed by a small cat” (cf. γ4 in Table 1).

It is important to emphasize that there is a substantial difference between
the algorithm presented in [17] and the one we discussed in the previous sections:
while the input is a labeled graph G and a target node v, the output is, in this
case (and unlike the definition of L-GRE problem presented in §2 where the
output is a formula), the cheapest (with respect to some, previously specified

Using Logic in the Generation of Referring Expressions 11

cost function) connected subgraph H of G which uniquely refers to (v,G) if there
is such H, and ⊥ otherwise.

We will not deal with cost functions here; it is enough to know that a cost
function is a monotonic function that assigns to each subgraph of a scene graph
a non-negative number which expresses the goodness of a subgraph –e.g. in
Figure 2, one may tune the cost function so that (iii) is cheaper than (iv), and
hence (iii) will be preferred over (iv).

For reasons of space we will not introduce here the detailed algorithm pro-
posed in [17]. Roughly, it is a straightforward branch and bound algorithm that
systematically tries all relevant subgraphs H of G by starting with the subgraph
containing only vertex v and expanding it recursively by trying to add edges
from G that are adjacent to the subgraph H constructed up to that point. In
the terminology of [17] a distractor is a node of G different from v that is also
referred by H. The algorithm ensures that a subgraph uniquely refers to the
target v when it has no distractors. Reached this point we have a new candidate
for the solution, but there can be other cheaper solution so the search process
continues until the cheapest solution is detected. Cost functions are used to guide
the search process and to give preference to some solutions over others.

Here is the key link between the graph-based method of [17] and our logical-
oriented perspective: on finite relational models, subgraph isomorphism corre-
sponds to FO−-simulations, in the sense that given two nodes u, v of G, there is
a subgraph isomorphic to G via f , containing u and v, and such that f(u) = v iff

u
FO−→ v. Having made explicit this notion of sameness and, with it, the logical

language associated to it, we can proceed to generalize the algorithm to make it
work for other languages, and to adapt it in order to output a formula instead
of a graph. This is shown in Algorithms 3 and 4.

Algorithm 3: makeREL(v)

input : an implicit finite
G = 〈∆G, || · ||〉 and
v ∈ ∆G

output: an L-RE for v in G if
there is one, or else ⊥

H := 〈{v}, ∅〉;
f := {v 7→ v};
H ′ := findL (v,⊥, H, f);

return buildFL (H ′, v);

Algorithm 4: findL(v, best , H, f)

if best 6= ⊥ ∧ cost(best) ≤ cost(H) then
return best

distractors := {n | n ∈ ∆G, n 6= v, v
L→n};

if distractors = ∅ then
return H

foreach 〈H ′, f ′〉 ∈ extendL(H, f) do
I := findL (v, best , H ′, f ′);
if best = ⊥∨ cost(I) ≤ cost(best) then

best := I

return best ;

These algorithms are parametric on L; to make them concrete, one needs to
provide appropriate versions of buildFL and extendL. The former transforms
the computed graph which uniquely refers to the target v into an L-RE formula
for v; the latter tells us how to extend H at each step of the main loop of
Algorithm 4. Note that, unlike the presentation of [17], makeREL computes not
only a graph H but also an L-simulation f . In order to make the discussion

12 Carlos Areces, Santiago Figueira, and Daniel Goŕın

of the differences with the original algorithm simpler, we analyze next the case
L = FO− and L = EL.

The case of FO−. From the computed cheapest isomorphic subgraph H ′ one can
easily build an FO−-formula that uniquely describes the target v, as is shown in
Algorithm 5. Observe that if FO-simulations were used instead, we would have
to include also which unary and binary relations do not hold in H ′.

Algorithm 5: buildFFO−(H ′, v)

let H ′ = 〈{a1 . . . an}, || · ||〉,v = a1;

γ :=
∧

ai 6=aj

(xi 6≈ xj) ∧
∧

(ai,aj)∈||r||

r(xi, xj) ∧
∧

ai∈||p||

p(xi)

return ∃x2 . . .∃xn.γ;

Algorithm 6: extendFO−(H, f)

A := {H+p(u) | u ∈ ∆H ,
u ∈ ||p||G \ ||p||H};

B := {H+r(u, v) | u ∈ ∆H ,
{(u, v), (v, u)} ∩ ||r||G \ ||r||H 6= ∅};
return (A ∪B)× {id};

Regarding the function which extends the given graph in all possible ways (Algo-
rithm 6), since H is a subgraph of G, f is the trivial identity function id(x) = x.
We will see the need for f when discussing the case of less expressive logics
like EL. In extendFO− we follow the notation of [17] and write, for a relational
model G = 〈∆, || · ||〉, G + p(u) to denote the model 〈∆ ∪ {u}, || · ||′〉 such that
||p||′ = ||p|| ∪ {u} and ||q||′ = ||q|| when q 6= p. Similarly, G + r(u, v) denotes the
model 〈∆∪{u, v}, || · ||′〉 such that ||r||′ = ||r||∪{(u, v)} and ||q||′ = ||q|| when q 6= r.
It is clear, then, that this function is returning all the extensions of H by adding
a missing attribute or relation to H, just like is done in the original algorithm.

The case of EL. Observe that findEL uses an EL-simulation, and any FO−-
simulation is an EL-simulation. One could, in principle, just use extendFO− also
for EL. If we do this, the result of findEL will be a subgraph H of G such that
for every EL-simulation ∼, u ∼ v iff u = v. The problem is that this subgraph
H may contain cycles and, as it is well known, EL (even ALC) are incapable to
distinguish a cycle from its unraveling9. Hence, although subgraph isomorphism
get along with FO−, it is too strong to deal with EL.

A well-known result establishes that every relational modelM is equivalent,
with respect to EL-formulas,10 to the unraveling of M. That is, any model and
its unraveling satisfy exactly the same EL-formulas. Moreover, the unraveling
of M is always a tree, and as we show in Algorithm 7, it is straightforward to
extract a suitable EL-formula from a tree.

Therefore, we need extendEL to return all the possible “extensions” of H.
Now “extension” does not mean to be a subgraph of the original graph G any-
more. We do this by either adding a new proposition or a new edge that is
present in the unraveling of G but not in H. This is shown in Algorithm 8.

9 Informally, the unraveling of G, is a new graph, whose points are paths of G from a
given starting node. That is, transition sequences in G are explicitly represented as
nodes in the unraveled model. See [3] for a formal definition.

10 Actually, the result holds even for ALC-formulas.

Using Logic in the Generation of Referring Expressions 13

Algorithm 7: buildFEL(H ′, v)

requires H ′ to be a tree
γ := {∃r.buildFEL(H ′, u) |

(v, u) ∈ ||r||};
return (

∧
γ) ∧ (

∧
v∈||p|| p);

Algorithm 8: extendEL(H, f)

A :=
{〈H+p(u), f〉 | u ∈ ∆H , u ∈ ||p||G \ ||p||H};

B := ∅;
foreach u ∈ ∆G do

foreach uH ∈ ∆H/(f(uh), u) ∈ ||r||G do
if ∀v : (uH , v) ∈ ||r||H ⇒ f(v) 6= u
then

n := new node;
B := B ∪
{〈H + r(uH , n), f ∪ {n 7→ u}〉};

return A ∪B;

Observe that the behavior of findEL is quite sensible to the cost function em-
ployed. For instance, on cyclic models, a cost function that does not guarantee
the unraveling is explored in a breadth-first way may lead to non-termination
(since findEL may loop exploring an infinite branch).

As a final note on complexity, although the set of EL-distractors may be
computed more efficiently than FO−-distractors (since EL-distractors can be
computed in polynomial time, and computing FO−-distractors seems to require
a solution to the subgraph isomorphism problem which NP-complete), we cannot
conclude that findEL is more efficient than findFO− in general: the model built
in the first case may be exponentially larger –it is an unraveling, after all. We
will come back to this in §6.

5 Combining GRE Methods

An appealing feature of formulating the GRE problem modulo expressivity is
that one can devise general strategies that combine L-GRE algorithms. We il-
lustrate this with an example.

The algorithms based on L-simulator sets like the ones in §3 simultaneously
compute referring expressions for every object in the domain, and do this for
many logics in polynomial time. This is an interesting property when one antic-
ipates the need of referring to a large number of elements. However, this family
of algorithms is not as flexible in terms of implementing preferences as those we
introduced in §4 –though some flexibility can be obtained by using cost func-
tions for selecting u, v and w in the main loop of Algorithm 2 instead of the
non-deterministic choices.

There is a simple way to obtain an algorithm that is a compromise between
these two techniques. Let A1 and A2 be two procedures that solve the L-GRE
problem based on the techniques of §3 and §4, respectively. One can first com-
pute an L-RE for every possible object using A1 and then (lazily) replace the
calculated RE for u with A2(u) whenever the former does not conform to some
predefined criterion. This is correct but we do better, taking advantage of the
equivalence classes obtained using A1.

14 Carlos Areces, Santiago Figueira, and Daniel Goŕın

Since A1 computes, for a givenM = 〈∆, || · ||〉, the set sim(u) for every u ∈ ∆,
one can build in polynomial time, using the output of A1, the model ML =
〈{[u] | u ∈ ∆}, || · ||L〉, such that: [u] = {v | u L→ v and v

L→ u} and ||r||L =
{([u1] . . . [un]) | (u1 . . . un) ∈ ||r||}. ML is known as the L-minimization of M.
By a straightforward induction on γ one can verify that (u1 . . . un) ∈ ||γ|| iff
([u1] . . . [un]) ∈ ||γ||L and this implies that γ is an L-RE for u in M iff it is an
L-RE for [u] in ML.

If M has a large number of indistinguishable elements (using L), then ML
will be much smaller thanM. Since the computational complexity of A2 depends
on the size of M, for very large scenes, one should compute A2([u]) instead.

6 On the Size of Referring Expressions

The expressive power of a language L determines if there is an L-RE for an
element u. It also influences the size of the shortest L-RE (when they exist).
Intuitively, with more expressive power we are able to ‘see’ more differences and
therefore have more resources at hand to build a shorter formula.

A natural question is, then, whether we can characterize the relative size of
the L-REs for a given L. That is, if we can give (tight) upper bounds for the size
of the shortest L-REs for the elements of an arbitrary model M, as a function
of the size of M.

For the case of one of the most expressive logics considered in this article,
FO−, the answer follows from algorithm makeREFO− in §4. Indeed, if an FO−-
RE exists, it is computed by buildFFO− from a model H that is not bigger than
the input model. It is easy to see that this formula is linear in the size of H and,
therefore the size of any FO−-RE is O(#∆+ #|| · ||). It is not hard to see that
this upper bound holds for FO-REs too.

One is tempted to conclude from Theorem 2 that the size of the shortest EL-
RE is O(#∆ ×#|| · ||), but there is a pitfall. Theorem 2 assumes that formulas
are represented as a DAG and it guarantees that this DAG is polynomial in
the size of the input model. One can easily reconstruct (the syntax tree of) the
formula from the DAG, but this, in principle, may lead to a exponential blow-
up –the result will be an exponentially larger formula, but composed of only a
polynomial number of different subformulas. As the following example shows,
it is indeed possible to obtain an EL-formula that is exponentially larger when
expanding the DAG representation generated by Algorithm 2.

Example 1. Consider a language with only one binary relation r, and let M =
〈∆, || · ||〉 where ∆ = {1, 2, . . . , n} and (i, j) ∈ ||r|| iff i < j. Algorithm 2 initializes
F (j) = > for all j ∈ ∆. Suppose the following choices in the execution: For
i = 1, . . . , n − 1, iterate n − i times picking v = w = n − i + 1 and successively
u = n − i, . . . , 1. It can be shown that each time a formula F (j) is updated, it
changes from ϕ to ϕ ∧ ∃r.ϕ and hence it doubles its size. Since F (1) is updated
n− 1 many times, the size of F (1) is greater than 2n.

Using Logic in the Generation of Referring Expressions 15

The large EL-RE of Example 1 is due to an unfortunate (non-deterministic)
choice of elements. Example 2 shows that another execution leads to a quadratic
RE (but notice the shortest one is linear: (∃r)(n−1).>).

Example 2. Suppose now that in the first n−1 iterations we successively choose
v = w = n − i and u = v − 1 for i = 0 . . . n − 2. It can be seen that for further
convenient choices, F (1) is of size O(n2).

But is it always possible to obtain an EL-RE of size polynomial in the size
of the input model, when we represent a formula as a string, and not as a DAG?
In [12] it is shown that the answer is ‘no’: for L ∈ {ALC, EL, EL+}, the lower
bound for the length of the L-RE is exponential in the size of the input model11,
and this lower bound is tight.

7 Conclusions

The content determination phase during the generation of referring expressions
identifies which ‘properties’ will be used to refer to a given target object or set
of objects. What is considered as a ‘property’ is specified in different ways by
each of the many algorithms for content determination existing in the literature.
In this article, we put forward that this issue can be addressed by deciding
when two elements should be considered to be equal, that is, by deciding which
discriminatory power we want to use. Formally, the discriminatory power we
want to use in a particular case can be specified syntactically by choosing a
particular formal language, or semantically, by choosing a suitable notion of
simulation. It is irrelevant whether we choose first the language (and obtain the
associated notion of simulation afterwards) or vice versa.

We maintain that having both at hand is extremely useful. Obviously, the
formal language will come handy as representation language for the output to
the content determination problem. But perhaps more importantly, once we
have fixed the expressivity we want to use, we can rely on model theoretical
results defining the adequate notion of sameness underlying each language, which
indicates what can and cannot be said (as we discussed in §2). Moreover, we can
transfer general results from the well-developed fields of computational logics and
graph theory as we discuss in §3 and §4, where we generalized known algorithms
into families of GRE algorithms for different logical languages.

An explicit notion of expressiveness also provides a cleaner interface, either
between the content determination and surface realization modules or between
two collaborating content determination modules. An instance of the latter was
exhibited in §5.

As a future line of research, one may want to avoid sticking to a fixed L but
instead favor an incremental approach in which features of a more expressive
language L1 are used only when L0 is not enough to distinguish certain element.

11 More precisely, there are infinite models G1, G2, . . . such that for every i, the size of
Gi is linear in i but the size of the minimum RE for some element in Gi is bounded
from below by a function which is exponential on i.

16 Carlos Areces, Santiago Figueira, and Daniel Goŕın

References

1. Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of descrip-
tion logic. In: Proc. of the 5th INLG. Salt Fork, OH, USA (2008)

2. Baader, F., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press (2003)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001)

4. Dale, R.: Cooking up referring expressions. In: Proc. of the 27th ACL (1989)
5. Dale, R., Haddock, N.: Generating referring expressions involving relations. In:

Proc. of the 5th EACL (1991)
6. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the

generation of referring expressions. Cognitive Science 19 (1995)
7. Dale, R., Viethen, J.: Referring expression generation through attribute-based

heuristics. In: Proc. of the 12th ENLG workshop. pp. 58–65 (2009)
8. van Deemter, K.: Generating referring expressions: Boolean extensions of the in-

cremental algorithm. Computational Linguistics 28(1), 37–52 (2002)
9. van Deemter, K., van der Sluis, I., Gatt, A.: Building a semantically transparent

corpus for the generation of referring expressions. In: Proc. of the 4th INLG (2006)
10. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-

lation equivalence. Theor. Comput. Sci 311, 221–256 (2004)
11. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Springer (1996)
12. Figueira, S., Goŕın., D.: On the size of shortest modal descriptions. In: Advances

in Modal Logic. vol. 8, pp. 114–132 (2010)
13. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. Freeman (1979)
14. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite

and infinite graphs. In: Proc. of 36th Annual Symposium on Foundations of Com-
puter Science. pp. 453–462. IEEE Computer Society Press (1995)

15. Hopcroft, J.: An nlog(n) algorithm for minimizing states in a finite automaton. In
Z. Kohave, editor, Theory of Machines and Computations, Academic Press (1971)

16. Horacek, H.: An algorithm for generating referential descriptions with flexible in-
terfaces. In: Proc. of the 35th ACL. pp. 206–213 (1997)

17. Krahmer, E., van Erk, S., Verleg, A.: Graph-based generation of referring expres-
sions. Computational Linguistics 29(1) (2003)

18. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

19. Saha, D.: An incremental bisimulation algorithm. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007: Foundations of Software Technology and Theoretical Computer
Science, LNCS, vol. 4855, pp. 204–215. Springer Berlin / Heidelberg (2007)

20. Stone, M.: On identifying sets. In: Proc. of the 1st INLG (2000)
21. Stone, M., Webber, B.: Textual economy through close coupling of syntax and

semantics. In: Proc. of the 9th INLG workshop. pp. 178–187 (1998)
22. Viethen, J., Dale, R.: Algorithms for generating referring expressions: Do they do

what people do? In: Proc. of the 4th INLG (2006)

	Using Logic in the Generation of Referring Expressions

